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In this paper we develop new global perturbation techniques for detecting homoclinic and heteroclinic orbits in a class of 
four dimensional ordinary differential equations that are perturbations of completely integrable two-degree-of-freedom 
Hamiltonian systems. Our methods are fundamentally different than other global perturbation methods (e.g. standard 
Melnikov theory) in that we are seeking orbits homoclinic and heteroclinic to fixed points that are created in a resonance 
resulting from the perturbation. Our methods combine the higher dimensional Melnikov theory with geometrical singular 
perturbation theory and the theory of foliations of invariant manifolds. 

We apply our methods to a modified model of the forced and damped sine-Gordon equation developed by Bishop et al. 
We give explicit conditions (in terms of the system parameters) for the model to possess a symmetric pair of homoclinic 
orbits to a fixed point of saddle-focus type; chaotic dynamics follow from a theorem of Silnikov. This provides a mechanism 
for chaotic dynamics geometrically similar to that observed by Bishop et al.; namely, a random "jumping" between two 
spatially dependent states with an intermediate passage through a spatially independent state. However, in order for this 
type of Silnikov dynamics to exist we require a different, and unphysical, type of damping compared to that used by Bishop 
et al. 

1. Introduction 

The existence of a trajectory connecting an equilibrium (or fixed) point of an ordinary differential 
equation, a homoclinic orbit, is of special significance in virtually all applications in which such solutions 
arise. For example, often such trajectories lie at the heart of what is termed bursting phenomena in 
mathematical biology [1]. Homoclinic orbits have been shown to underlie the phenomena of intermit- 
tency in fluid mechanics [2]. There are several examples where homoclinic orbits play a role in the 
chaotic behavior of electrical circuits [3]. In nonlinear optics it has been shown that homoclinic orbits can 
be responsible for the chaotic behavior of lasers as well as light pulses in fiber optics applications [4]. 
Homoclinic orbits have been shown to be responsible for chaotic behavior arising in structural mechanics 
[5] and there are a variety of chemical reactions where chaotic oscillations in the reactant concentrations 
are due to the presence of a homoclinic orbit [6]. In fact, it is not an exaggeration to claim that in 
virtually every manifestation of chaotic behavior known thus far, some type of homoclinic behavior is 
lurking in the background. Thus, it is important to have mathematical methods for detecting homoclinic 
orbits in specific systems of ordinary differential equations. 
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Unfortunately, there are few analytical methods for proving the existence, or nonexistence, of 
homoclinic orbits in a given ordinary differential equation. For two-dimensional problems phase plane 
techniques can be used, however the situation becomes especially difficult for systems having phase 
spaces of dimension larger than two. The most widely applicable methods are the so-called Melnikov 
methods [7]. These are global perturbation methods that utilize the geometrical features of integrable 
Hamiltonian systems as a framework on which to develop perturbation methods. Roughly speaking, 
the unperturbed system is an integrable Hamiltonian system having a normally hyperbolic invariant 
set whose stable and unstable manifolds intersect nontransversely. The global geometry associated with 
the integrable structure is used to develop coordinates which are used in determining if any of the 
homoclinic orbits to the normally hyperbolic invariant set (which is affected only slightly by the 
perturbation) survive under perturbation. 

In this paper we develop a new method for proving the existence of homoclinic orbits in a class of 
perturbed, integrable two-degree-of-freedom Hamiltonian systems, where the perturbation is not Hamil- 
tonian. Our methods are fundamentally different from previous methods in that we prove the existence 
of orbits homoclinic to fixed points that are created by the perturbation in a resonance. More precisely, 
in the four dimensional phase space there is a two-dimensional normally hyperbolic locally invariant 
manifold which, for the unperturbed problem, contains a circle of fixed points. This circle of fixed points 
arises as a result of the vanishing of a frequency, which is the origin of the term resonance. Under  the 
perturbation this circle of fixed points "blows up" into the typical resonance band structure, restricted to 
the two dimensional locally invariant manifold. Namely, a pair of fixed points survive, and become a 
saddle and a sink, with the unstable manifold of the saddle falling into the sink and the stable manifold 
of the saddle forming the boundary of the basin of attraction of the sink. We then develop a method for 
determining the existence of orbits homoclinic to the fixed point in the resonance that is a sink when 
restricted to the two-dimensional manifold. 

Our method involves two steps: in the first step we show the existence of an orbit that leaves the fixed 
point and returns to a neighborhood of the resonance using an argument very much like that used in the 
standard higher dimensional Melnikov theory. In the next step we use the theory of fibering of stable and 
unstable manifolds by submanifolds corresponding to initial conditions of trajectories that have the same 
asymptotic phase in order to show that the orbit actually returns to the fixed point. This last step is 
essentially a problem in singular perturbation theory and these stable fibers enable us to transform it to a 
problem in regular perturbation theory. 

Our methods apply to systems of the following form: 

.f =JDxH(X,I  ) +egx(x , I ,y , l . t ,e ) ,  [=eg ' ( x , I , y , t z ,E ) ,  ~ /=DtH(x , I )  +egV(x,I,y,la.,e) 

( x ' I ' 3 ' ) ~ Z X R X S I '  J =  - 1  ' 

where /z  ~ R p is a vector of parameters and 0 < E << 1 (note: throughout this paper "Dx", etc. denotes 
the partial derivative with respect to x, etc. whereas d/dx,  etc. will denote the total derivative with 
respect to x, etc.). In section 2 we describe our assumptions on the structure of the unperturbed system 
(i.e., (1.1), with e = 0), in particular, we describe the degenerate structure that leads to orbits homoclinic 
to a resonance band. In section 3 we describe certain results from the theory of normally hyperbolic 
invariant manifolds that give us some general information about the structure of the perturbed 
equations, especially the regular versus singular perturbation aspects and the geometrical interpretation. 
In section 4 we develop the method for determining the existence of homoclinic connections and in 
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section 5 we discuss conditions under which these homoclinic connections can lead to chaotic dynamics. 
In section 6 we apply the theory to a set of ordinary differential equations that model certain modal 
interactions in the perturbed nonlinear Schr6dinger equation. For completeness we give some back- 

ground for this particular application. 
The development of all of the theory in this paper was motivated by the desire to understand a variety 

of numerical experiments on the damped and driven sine-Gordon equation performed by Bishop, 
Ercolani, Forest, McLaughlin, and Overman [8]. We give a brief description of their results. Consider the 

perturbed sine-Gordon equation 

Ut,  - UXX + sin u = E(--d~u, + ¢{Utx x + r sin tot), 

with periodic, even boundary conditions: 

u ( x = - ½ L , t ) = u ( x = l L , t ) ,  u ( x , t ) = u ( - x , t ) ,  

with 0 < e8  << 1, 0 < EIAI << 1, to = 1 - eo3, and L fixed where E and t5 are both positive. In the original 
numerical experiments ¢{ was taken to be zero, however we will include it in our analysis and discuss the 
reasons for this when we describe the two-mode model at the end of the introduction. In the numerical 
experiments Bishop et al. chose a single hump sine-Gordon "brea ther"  as an initial condition and 

observed its evolution in space and time as they increased the forcing E/~. 
The complete bifurcation sequence is described in ref. [9]. Here  we only present the main point, which 

is that above a certain value of e/~ (with 2[ = 0) chaotic jumping of the solution occurs between two 
"breathers" ,  one peaked at the middle and the other at the ends of the interval [ -  ~L,~ ~L],I with the 
solution passing near a spatially independent (or "fiat") solution on every jump. Comparing this situation 
with the geometrical structure in the phase space of the unperturbed sine-Gordon equation [10], they 
found that the latter possesses linearly unstable spatially independent solutions connected to themselves 
by homoclinic orbits: the two types of "breathers"  with a spatial hump structure which exhibit chaotic 
behavior in the perturbed problem. From the knowledge of the geometrical structure of the phase space 
of the unperturbed system, as well as the fact that homoclinic orbits appeared to be involved in the 
numerically observed chaos, Bishop et al. inferred that a Melnikov-type analysis could possibly be 
developed in order to see how these unperturbed structures are distorted under perturbation in such a 
way as to give rise to chaos. As a preliminary step in the analysis they chose to develop a simple model 
that captures the essential structure of the unperturbed and perturbed sine-Gordon equation. It is this 

simple model that we now describe. 
At small amplitudes, and for frequencies close to 1, the dynamics of the sine-Gordon equation can be 

approximated by the nonlinear Schr6dinger envelope equation [11]. This can be seen as follows; if we 
seek a solution of the perturbed sine-Gordon equation of the form 

u , ( x , t )  = 2  e V ~ - [ B ( X , T ) e i o ' t + B * ( X , T ) e  -i°~'] + ~ ' ( E ) ,  

with X = ~ x and T = eo3t, and substitute it into the perturbed sine-Gordon equation we obtain the 
following perturbed nonlinear Schrfdinger equation for B(X,  T): 

- i B  T + Bxx + (IBI 2 - 1)B = e ( i a B  - iABxx  + iF), 
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where k = 2eo3a, fi~ = A, and /~  = 8 E 3 / z t ~ a / 2 F .  This equation is defined on the X interval [ - 1 ~Lx, ~Lx] 
where L x = ~ L. 

Bishop et al. next constructed a two (Fourier) mode truncation to the nonlinear Schr6dinger equation 
by assuming a solution of the form 

B( X,  T) = --~c(  T) + b ( T )  cos kX 

(with k = 2ar/Lx). Substituting this solution into the equation and neglecting the higher fourier modes 
gives the following two-mode model 

- i 6  + (½1cl 2 + ½1bl 2 - 1)c + ½(cb* + bc*)b = i ,ac  + i ,r ,  

- i b  + [½[c[ 2 + 3lbl 2 -  (1 + k2)]b + l(cb* +bc*)c = ieflb, 

where we have set F = v ~ F ,  and f l = ( a + A k 2 ) .  Now we return to the issue of damping in the 
nonlinear Schr6dinger equation. If we think of the solution as being decomposed into fourier modes, the 
term iaB damps each mode at the same rate, however the term - i A B x x  damps modes at different 
rates (one can easily see the manifestation of this in the two mode model). In the two-mode model we 
found that the type of homoclinic orbit studied in this paper will not exist if the two modes are damped 
at equal rates. Moreover, we found that in order for the homoclinic orbit to exist the b mode must be 
negatively damped. In section 6 we present a study of the dynamics of the two-mode model where we will 
discuss these issues more fully. 

2. Structure of  the unperturbed system 

As mentioned in section 1, the system obtained by setting e = 0 in (1.1), is referred to as the 
unperturbed system which we write below: 

Yc= JD xH (x , I ) ,  i = 0 ,  ~ / = D t H ( x , I ) ,  

( x , I , y )  ~ R 2 × R × S  1. (2.1)o 

Note the structure of (2.1)0; the x component of (2.1) o decouples from the I and 3' components of (2.1) 0. 
The dynamics of the I and 3' components of (2.1) 0 are quite simple and we make the following 
assumption on the dynamics of the x component of (2.1) 0. 

Assumption 1. For all I ~ [11, I2], the equation 

.ic = JDxH( X, I ) (2.1)o,.  

has a hyperbolic fixed point, £0(I), connected to itself by a homoclinic orbit, xh(t,I),  i.e., 

limt ~ ±~o xh( t, I) = £o(I). 
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From (2.1)0. x and assumption 1 we can draw the following conclusions concerning the phase space 
structure of (2.1) 0 in the full four dimensional phase space. 

2.1. The normally hyperbolic invariant manifold ¢~" 

It is easy to verify that the set of points given by 

..,e'= {(x, I,v)lx =~o(I) ,  I, < I<I2}  (2.2) 

is a two-dimensional, normally hyperbolic invariant manifold with boundary. The boundary of a¢', 
denoted act', is given by the two circles {(x, I ,y) lx  = $0(I), I =  I0,  {(x, I ,y ) lx  = ~0(I), 1 =  •2}- Thus, since 
i = 0, the vector field (2.1) 0 is identically zero on 0.,Lv. Invariance follows from assumption 1 which says 
that the vector field (2.1) 0 is tangent to .,¢'. The term normally hyperbolic means that the rate of 
expansion and contraction under the linearized dynamics in directions complementary to M" dominates 
that in directions tangent to .~¢. An analytical formulation as well as a proof of this statement for systems 
of the form of (2.1) 0 can be found in ref. [7]. The important point for us is that normally hyperbolic 
invariant sets persist under perturbation. 

2.2. The dynamics on .K 

The unperturbed system restricted to a¢¢ is given by -./ 

[ = 0 ,  " ~ = D t H ( ~ o ( I ) , I ) ,  I, <I<_I 2. (2.3) 

This system can be trivially solved and the trajectories are given by 

I = constant, y ( t )  = ( D z H ( ; o ( I ) ,  I ) ) t  + Yo. (2.4) 

Thus if DIH(£0( I )  , I ) 4 : 0  then I =  constant labels a periodic orbit and if DIH(.~0(I) , I ) =  0 then 
I = constant labels a circle of fixed points. We refer to a value of I for which DtH($o(I)  , I )  = 0 as a 
resonant I value and we make the following assumption on the unperturbed system restricted to .,tv. 

Assumption 2. (Resonance) There exists a value of I ~ [Ii, I2], denoted I r, at which DIH(£0(I r ) ,  i r )  = 0. 

We remark that if there exists more than one resonant I value then our theory can be applied to each 
one individually. 

2.3. W~(.Jr), WU(.,¢'), and the homoclinic manifold, F 

The two-dimensional normally hyperbolic invariant manifold with boundary a¢" has three dimensional 
stable and unstable manifolds which we denote as WS(.4¢ ") and WU(~tv), respectively. This can be 
inferred from the structure of the x component of (2.1) 0 given in assumption 1 as well as the proof of 
normal hyperbolicity of .~" given in ref. [7]. Moreover, the existence of the homoclinic orbit of (2.1)0, x 
implies that WS(at v) and WU(ae ") intersect (nontransversely) along a three dimensional homoclinic 
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manifoldwhich we denote by F. A trajectory in F -  WS(aC¢)c~ WU(.~ ") can be expressed as 

( £ h ) x h ( t , I ) , I , y ( t , I ,  yo) = D t H ( x  ( s , I ) , I ) d s + y o  (2.5) 

and it is clear that this trajectory approaches an orbit in ~t" as t ~ _+~ since xh(t ,  I )  -*~o(I)  as t - ,  +oo. 
It will be useful later on to have a parametrization of F so that we can describe specific points in F. This 
can be accomplished by using the fact that since (2.1) o is an autonomous system shifting the t argument 
in the expression for a trajectory of (2.1) 0 results in a new trajectory of the system. Hence 

(xh(  t - -  t o, I ) , I ,  y (  t -- t o , I ,  Yo) ) (2.6) 

is also a trajectory of (2.1) 0. Now consider the x component of (2.1) o and let xh(0, I )  be a reference 
point on the homoclinic trajectory to 270(1). Then, by uniqueness of solutions, t o is the unique time of 
flight for the point xh(--to, I )  to reach the reference point xh(O, I). Hence, in this manner, all points on 
the homoclinic orbit xh(t ,  I )  to -~0(I) can be put into 1-1 correspondence with the points in E. Using 
this information for the full four-dimensional system, the homoclinic manifold F can be parametrized as 
follows: 

F =  {(x, I , y ) I x  = x h ( - - t 0 , I ) ,  y = y ( - - t o , I ,  yo),  I, <_I <I2, t o ~ ~, 0 < To < 2"rr}, (2.7) 

i.e., the values of t o, I, and Yo given in (2.7) can be put in 1-1 correspondence with the points in F via 
the rule specified in (2.7). We note that this parametrization of the homoclinic manifold implies that 
varying t o moves one along the homoclinic manifold along the same orbit. This is different from the 
parametrization used in [7], a comparison can be found in [15]. 

2.4. The dynamics on F and its relation to the dynamics in Jr" 

Recall the expression for an orbit in F given in (2.5). As xh(t ,  I ) -~ ,~0(I)  and I remains constant, we 
want to call attention to the expression that we will define as 

A T = y(  + 0% I, Y0) -- 3'( -- 0% I, 3'0). (2.8) 

Now for I such that DIH(£0(I ) ,  I )  4= 0 it is easy to see that A T is not defined. This just reflects the fact 
that asymptotically the orbit approaches a periodic orbit whose phase constantly changes forever. 
However at resonant I values A T is defined since the integral converges (convergence of the integral 
follows from the fact that x h ( t , I ) ~ £ o ( I )  exponentially fast as t -~  + ~ ,  hence at resonance 
DxH(xh( t ,  I), I )  goes to zero exponentially fast as t goes to _+ oo). Since resonant I values denote circles 
of fixed points on ~t" the orbit (xh( t ,  i r ) ,  Ir, y(t ,  U, yo) ) is typically a heteroclinic connection between 
different points on the resonant circle of fixed points (the connection will be homoclinic if A T = 2-rrn, for 
some integer n). The number AT gives the shift in phase between the two endpoints of the heteroclinic 
trajectory along the circle of fixed points. In fig. 2.1 we illustrate the dynamics in the full four-dimen- 
sional phase space for the unperturbed system (2.1) o . 
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Fig. 2.1. (a) Geometry of .~v and the stable and unstable manifolds of .a v. (b) The dynamics of .av. (c) The geometry of trajectories 
homoclinic to the periodic orbits on .~" and orbits heteroclinic to fixed points on the resonance. 

3. Structure of the perturbed system 

The invariant manifolds and their associated structure in the integrable unperturbed system (2.1) 0 
described in section 2 will form the framework on which we develop our analytical methods. In 
particular, a¢" and its stable and unstable manifolds persist under sufficiently small perturbations; 
however the dynamics within these manifolds will generally undergo radical changes under perturbation. 
In this section we will discuss these issues. As a preliminary warning to the reader we remark that we will 
use two different sets of coordinates in our analysis; the (x, I, y) coordinates already defined and (x, h, y) 
coordinates which will be defined shortly. We will comment for the need and reasoning for this as we go 
along. We begin by considering the behavior of atv along with its stable and unstable manifolds under 
perturbation. 

"3.1. The persistence of ..~', WS(.Jf), and W u(.~) under perturbation 

The question of the persistence under perturbations of invariant manifolds with boundary gives rise to 
certain technical questions concerning the nature of the trajectories at the boundary. In order to address 
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these questions precisely we begin by defining the set 

{(x, I,  )11 x- 0(t)l i, _<I_<r:), (3.1) 

where 

I~ <[1<[2 <I z. 

If I n = ./'1 and I z = [2 then clearly U ~ is a neighborhood of Mr. However, for technical reasons (to be 
discussed shortly) we may need to slightly restrict the range of I values in discussing the perturbed 
manifolds and it is for this reason that the I interval in the definition of U ~ has been restricted (note: It 
will turn out that /~ can be chosen arbitrarily close to I~ and [2 can be chosen arbitrarily close to 12). 
The set U a will be useful in characterizing the nature of trajectories near the invariant manifolds. For 
the unperturbed system, we define the local stable and unstable manifolds of Mr as 

w L ( M r )  = w (Mr) n u - w u ( M r )  n u 

We now state the persistence theorem. 

Theorem 3.1. There exists •0 > 0 sufficiently small such that for 0 < • < E o Mr persists as a C r, locally 
invariant two-dimensional normally hyperbolic manifold with boundary, which we denote by Mr,, having 
the following properties. 

(1) Mr, is C ~ in • and ~. 
(2) Mr, is C ~ e-close to Mr and can be represented as a graph over M r as 

~/~= ( ( x , l , y ) l x=£ , ( l , y , l x )  =-f0(1)  + •£ , (  I, y , / z )  + # , ( •2) ,  /l < I  < [z)" (3.2) 

Moreover, there exists 8 0 sufficiently small (depending on •) such that for 0 < ~ < 3 0 there exists locally 
invariant manifolds in U a, denoted Wl~c(Mr,), Wl~(Mr,), having the following properties. 

(3) Wn~c(Mr ,) and Wno~c(Mr,) are C r in • and p,. 
(4) WlS(.,~¢~) (-'1WloUc(.,~[¢,) ~--.,,~¢',. 
(5) Wl~(..av ,) (resp. Wio~c(af¢,)) is a graph over Wl~¢(.,~') (resp. W1~¢(.,~¢)) and is C r •-close to Wt~,~(.~) 

(resp, Wlo~¢(.a~)). 
(6) Let(x~(t),I~(t),~(t)) (resp. (x~(t),l~(t),y~(t))) denote a trajectory that is in Wn~c(.K ~) (resp. 

Wio~¢(.,~tv~)) at t = 0. Then as t ~ + oo (t ~ - ~ ) ,  either 
(a) (x~,(t), I~(t), y~(t)) (resp. (x2(t), I~(t), y~(t)) crosses 0U 8 

o r  
(b) Ix~,(t)-£~(I,T,l~)l ~ 0  (resp. Ix2(t)-£,(I,  3,,~)[--*0). 

We refer to Wl~,c(cJtv,) and Wio~(Mr,) as the local stable and unstable manifolds of Mr,, respectively. 

Proof. The proof follows from the invariant manifold theory developed by Fenichel in ref. [12]. 
Fenichel's theory is adapted to systems of the type (1.1)~ in [7], where the details of the proof of this 
theorem can be found. [] 
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We make the following remarks concerning the consequences and implications of this theorem. 

Remark 1. The term locally invariant means that trajectories with initial conditions on at, may leave ~ ,  
however they may do so only by crossing the boundary of .,g~. In proving the persistence of .~  under 
perturbation it is necessary to know the stability properties of trajectories in .~r on semi-infinite time 
intervals. Technically, this control is accomplished by modifying the perturbed vector field (1.1), in an 
arbitrarily small neighborhood of the boundary of ~ by using C ® "bump functions"; this procedure is 
thoroughly explained in [7] and [17]. The perturbed manifold is then constructed as a graph over the 
unperturbed manifold by using the graph transform technique. This is the reason why the range of I 
values for which .K, exists in the perturbed vector field (1.1), may need to be slightly decreased. 

Remark 2. The fact that a¢', is C r (r > 2) in/z and E allows us to Taylor expand the manifold in powers 
of /z and e. This will be important because we may need to explicitly compute the @(E) term in the 
expansion of £,(I, y,/z) given in (3.2). We now explain how this may be done. 

Differentiation of £,(I, y, /.t) along the perturbed vector field (1.1), gives a quasilinear partial 
differential equation that £~(I, y, ~) must satisfy. This equation is given by 

J D x H ( £ , , I  ) +EgX(£ , , I , y ,  tZE) 

= e(D,£, )  g ' ( £ , , I ,  y,/z, E) + (Dv£ , ) (DtH ( £~, I )  + EgV( £ , , I ,  y,/z, , ) ) .  (3.3) 

We can differentiate (3.3)with respect to e and obtain equations that the derivatives of £,(I,  y,/x) must 
satisfy. In this way we find that £1(I, 3',/z) must satisfy the ordinary differential equation: 

- (Dv£ 1)D,H(£o(1) ,  I )  + j D 2 H ( £ o ( I ) ,  I )£ ,  

= (Drfo(  I ) ) g  ~'(Xo(I), I, y,/.z, 0) - gX(£o( I ) ,  I, 'y,/.z, 0). (3.4) 

We want to point out that in one special circumstance (indeed, the situation that will be most important 
to us) the solution of (3.4) can immediately be written down, namely, at resonance. For at resonance, i.e., 
I = U, we have D/H(£0(Ir),  lr)  = 0 SO that (3.4) reduces to an algebraic equation with solution 

x l = ( J D Z H ( £ o ( I r ) , I r ) ) - ' [ D t x o ( I r ) g ' ( $ o ( I r ) , I r ,  y , l z ,O) -gX(£o( I r ) , I r ,  y,lz,O)]. (3.5) 

It is also easy to find an expression for D1£0(I) by implicitly differentiating the equation 

DxH(£o( I ) , I  ) =0 .  

This simple calculation gives 

D,£o(I )  = - (DEH(£0(1),  I ) ) - l (DzDxH(£o( I ) ,  I)) .  (3.6) 

Eqs. (3.5) and (3.6) will be useful later on. We remark that invertibility of Dx2H(£0(I), I ) -  1 follows from 
the hyperbolicity of £0(I). 
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Remark 3. We define the global stable and unstable manifolds of .~¢,, denoted WS(~¢',) and WU(.~',), 
respectively, as follows. Let ~bt(.) denote the flow generated by (1.1),, then we define 

WS(-~',) = U ~bt(W]~(.~f,) n Us), WU(.J~,) = U ~bt(WJ~,¢(-J~',) n U~). (3.7) 
t<0 t>0 

Remark 4. The phrase stable manifold of an invariant set typically means the manifold of trajectories that 
approach the invariant set as t--* + oo. However, our definition has a slightly different meaning that is 
peculiar to our invariant set, i.e., atr, having a boundary. This is characterized in terms of the 
alternatives (a) and (b) of part (vi) of theorem 3.1; similarly for the unstable manifold of an invariant set. 

3.2. The dynamics on ¢tt', 

We now want to discuss the dynamics on ¢~¢', under the perturbed vector field (1.1), for which we will 
introduce the (x, h, y) coordinates. The perturbed vector field restricted to A', is given by 

[ = e g t ( 2 , ( I , y , t z ) , I , y ,  lz,e), ~ = D I H ( 2 , ( I , y , t z ) , I ) + e g V ( 2 , ( I , Y , I - Q , I , Y , ~ , E ) .  (3.8) 

Taylor expanding (3.8) in powers of • gives 

i=•g'(  2o( I),I, y,~,O) +•2[(Dxg'( 2o( I),I, y,~,O),2,( I, y)) + D,g'(2o( I),I, y,~,O)] 
+ ~ ( • 3 ) ,  

~, = D , H ( 2 o ( I ) , I )  +• [ (D~(DiH(2o ( I ) , i ) ) , 21 ( i , y ) )  +gV(2o( l ) , I , y , l z ,O)  ] + ~ ( • 2 ) ,  (3.9) 

where ( ", • ) represents the usual Euclidean inner product. 
We want to study the dynamics of (3.9) near the resonance I = I r. For this purpose we will change 

variables in order to derive a simpler equation that describes the dynamics in a neighborhood of the 
resonance. Substituting 

I = I r + x / ~ h ,  y = y  (3.10) 

into (3.9), Taylor expanding in I in powers of v~-E, and rescaling time by letting ~-= ~ t gives the 
equations 

h' = g '  + 1/~ G(h,  y, I ~) + d~(e), 

y ' =  ((D~(DIH),D,$o > + D~g)h  + v~-F(h ,y ,~ )  + ~'(e) ,  (3.11) 

where the prime denotes differentiation with respect to the rescaled time ~-, 

G(h,  y , ~ )  = ((Dxgt, D,2o) + Dtgt)h  

and 

F (h ,y , / x )  = I[<(Dx(DxDtH))D,$0,D/20 > +(Dx(D,H) ,D2xo> + 2<Dx(D2H),D/20) + D3H] h2 

+ ( D x ( D , H ) ,  21> + g~ 
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and where all functions are evaluated at ~0(I) = £0(Ir), I = I r, 7, /z ,  and • = 0. The important advantage 
gained in localizing the equations near the resonance is that at e = 0 (3.11) is a one-degree-of-freedom 
(hence, integrable) Hamiltonian system given by 

h ' = g ' =  -D.~,,~, 7 ' =  ((Dx(D,H),DF.,7o) + D2H)h=Dh ~' ,  (3.12) 

where 

,,Ye'(h, 7) = ( (Dx(DtH) ,  Dtxo) + D/2H)Ih 2 - frog' d~/ 

is the Hamiltonian function. The integrable Hamiltonian structure at leading order is typical near 
resonances, see e.g., [13, 14, 16], and is extremely useful for understanding the qualitative (as well 
as the quantitative) structure of the dynamics near the resonance on ~ , .  The ~ dependence in the 
change of variables given in (3.10) is a consequence of the fact that ((Dx(DIH(.~o(Ir), I r ) ) , D l $ 0 ) +  
Dt2H(£0(ir), Ir)) ~ 0. If this is violated then a scaling with a different fractional power of • is required; 
see [14] for details. 

From the point of view of the dynamics on ¢~', we will henceforth only be interested in the dynamics in 
an @(v~-) neighborhood of the resonance I = I ~ and it will be useful to introduce some notation that 
emphasizes this fact. We will be studying the dynamics in the annulus centered at I = I r denoted as 
follows: 

~ = { ( x , h , 7 ) l x = £ , ( F +  v~e h ,7 , /x ) ,  [hi <C},  

where C > 0 is some constant. The constant C is chosen sufficiently large so that the annulus contains 
the unperturbed homoclinic orbit. It is important to note that in the h-7  coordinates the resonance zone 
(i.e., the annulus ~g,) is of @(1) width. The three dimensional stable and unstable manifolds of ~¢,, 
denoted W~(~',) and Wu(~¢',), respectively, are subsets of W~(~¢',) and WU(.4¢',), respectively, that are 
obtained by restricting the I values appropriately. 

From the point of view of perturbation theory, we will want to compare the dynamics in sO, with the 
unperturbed dynamics in the same region on .~tv (this is described precisely in section 3.3). For this 
reason we define the "unperturbed annulus" as 

~o -~ { ( x ,h ,7 ) l x  =)~o(/r) ,  Ihl < C}, 

with its three dimensional stable and unstable manifolds WS(5~'0) and WU(5~'0) that coincide along a 
branch. 

We make the following assumption on the structure of the integrable Hamiltonian system (3.12). 

Assumption 3. For /z  =/z  o there exists yc(/~0) and ys(/z0) such that q0 = (h, y ) =  (0, y~(/z0)) is a hyper- 
bolic saddle type fixed point of (3.12) and Po = (h, 3 ')= (0, 7c(/Zo)) is a center type fixed point of (3.12). 
Moreover, qo is connected to itself by a homoclinic orbit and P0 is the only fixed point inside this 
homoclinic orbit, see fig. 3.1. 
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Fig. 3.1. The dynamics associated with the leading order 
Hamiltonian vector field restricted to ~ described in as- 
sumption 3. 
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Fig. 3.2. Other possibilities for dynamics near the resonance 
for the leading order Hamiltonian vector field restricted to 

We make the following remarks concerning assumption 3 and its consequences. 

Remark 1. It is possible for there to be more than one saddle-center pair with a homoclinic connection 
on the resonance such as we illustrate in fig. 3.2. In this case our methods can be applied to each pair 

separately. 

Remark 2. Since the matrix associated with the linearization of the vector field about P0 and q0 is 
invertible, these fixed points will typically exist for an open set of parameter values that contains go. A 
typical way for these fixed points to disappear as the parameters are varied is for them to coalesce in a 
Hamiltonian saddle-node bifurcation. However, if more fixed points and homoclinic (or heteroclinic) 

orbits exist, then other scenarios are possible. 

Remark 3. An  equation for the separatrix curve can be easily obtained from the Hamiltonian (3.12) by 
using the fact that the "energy" of the level set of ,,W that defines the separatrix is equal to the energy of 

the saddle point q0, i.e., 

- g o )  = o .  (3.13) 

Remark 4. Since (3.12) is an integrable Hamiltonian system obviously the ~(v~-) terms in (3.11) may have 
a dramatic effect on the phase portrait. In particular, we are interested in the effect on the fixed points 
q0 and P0 and the homoclinic orbit connecting q0 as well as the dynamics inside the region bounded by 
this homoclinic orbit. The following two lemmas address these issues. 

Lemma 3.2. For E sufficiently small, 
(1) q0 remains a hyperbolic fixed point of saddle stability type, denoted q,, for (3.11). 
(2) If 

( (Dx(DtH),Dv$1)  + D~g v + D i g '  + ( D x g ' , D , $ 0 )  ) < 0  (3.14) 
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inside the homoclinic orbit connecting qo, then P0 becomes a hyperbolic sink, denoted p,,  for (3.11) and 
the homoclinic orbit breaks with a branch of the unstable manifold of q, falling into the sink, p,,  as 
shown in fig. 3.3. 

(3) P0 is ~'(V~-) close to p, and q0 is ~(vc~ -) close to q,. 

Proof. Part (1) follows from the persistence of hyperbolic fixed points. Part (2) uses the fact that the 
quantity 

(<D, DtH,  D,2,> + D , g "  + Dig t +(Dxg ' ,D t2o> ) 

is just DvF + DhG , which is the leading order term of the trace of the linearization of (3.11). Then a 
routine analysis using Bendixson's criteria and some simple phase plane techniques gives the result, see, 
e.g., [13-16] for details. Part (3) follows from a simple application of the implicit function theorem. [] 

The area enclosed by the homoclinic orbit connecting q0 in (3.12) is a good approximation to the 
domain of attraction of the sink p,. The following lemma makes this more precise. 

Lemma 3.3. Suppose condition (3.14) of Lemma 3.2 holds and let p denote any point in the region 
bounded by the unperturbed homoclinic orbit that is an #'(1) distance (in the h-T coordinates) from the 
homoclinic orbit. Then, for • sufficiently small, under the perturbed dynamics (i.e., (3.11)) the trajectory 
through p approaches p~ asymptotically as ¢ ~ oo. 

Proof. Under condition (3.14) of lemma 3.2, the stable manifold of q, forms the boundary of the basin of 
attraction for p,. A standard planar Melnikov analysis of (3.11) shows that the stable and unstable 
manifolds of q, split by an #'(vQ-) amount (in the h - y  coordinates) in a tubular neighborhood of the 
unperturbed homoclinic orbit excluding a small fixed neighborhood of  qo, hence the result follows; see 
fig. 3.4. [] 

i 
r +C,/~ 

h 

! = |  r 

l r - C J ~  
2x 

Fig. 3.3. The dynamics near the resonance of the vector field 
restricted to .~r under the conditions given in lemma 3.2. 

Ir +c~r~ 

I = I  t 

It- ¢,/~ 
2x 

Fig. 3.4. The basic of attraction of PE and its comparison 
with the unperturbed structure (for the "slow time" system) 
near the resonance. 
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3.3. The fibering of  WS(~¢,) and W~(~¢,): The singular perturbation nature 

Theorem 3.1 provides a description of the asymptotic behavior of orbits in WS(~¢,) and WU(~',) and 
lemmas 3.2 and 3.3 describe the dynamics on ~¢,. Now we want to "tie together" these results. In 
particular, we want to characterize orbits in WS(.a¢,) and WU(~',) in terms of the orbits to which they 
asymptote in .at,. We will see that this is a delicate problem in singular perturbation theory since the 
dynamics on ~¢, are "slow" compared to the "fast" dynamics transverse to ~',. Indeed, the dynamics 
near the resonance as described in section 3.2 are created entirely by the perturbation. For these issues 
the (x, h, 3') coordinates will be most appropriate. 

More insight into these questions can be obtained by directly examining the equations of motion. As 
described in section 3.2, the dynamics on ~', can be studied by restricting the vector field to ~¢, and 
introducing coordinates localized near the resonance as in (3.10). We rewrite these equations without 
rescaling time: 

h = v~eg'+eG(h,3",~)  q- t~'(E3/2), 

= V~-((Dx(D,H ), Dr20) + D2H)h + eF(h,  31, tz) + ~(E3/2) .  (3.15) 

Note that for E = 0 (3.15) reduces to 

h = 0 ,  5 ' = 0 .  (3.16) 

Of course, the dynamics in the full phase space are described by 

Yc = JDxH ( x, I ~) + 7r-eD,( JDxH( x, I r) )h + ½eD~(JD~H( x, i r ) ) h  2 

+egX(x,l~,3",lx,O) + ~ (e3 /2 ) ,  

h = x/eg'(x,I~,3",lx,O) +eD,  g ' ( x ,  Ir,3",tz,O)h + ~ (e3 /2 ) ,  

1 3 "~ = DIH ( x, I ~) + x/e-D~H( x, Ir)h + ~eDsH ( x, I~)h 2 + egr( x, i r ,  T,/~, 0) + ~'(e3/2).  (3.17) 

For e = 0, (3.17) reduces to 

Yc=JDxH(x,  Ir),  h = 0 ,  5 ,=DlH(X,  Ir). (3.18) 

There are several features that we want to point out concerning the above sets of equations. 
(1) From (3.16), we see that at e = 0 the neighborhood of the resonance on ~¢ in the variables scaled as 

in (3.10) consists entirely of fixed points. We can think of the change of variables in (3.10) as "blowing 
up" the circle of fixed points into an annulus of fixed points centered at I = I r. 

(2) For e small, but nonzero, we see that, roughly speaking, the character of the dynamics in the x 
variables is not altered much under the influence of the perturbation. Theorem 3.1 makes this more 
precise. However, the dynamics on the annulus are radically different. Indeed, for e = 0 there are no 
dynamics on the annulus (it consists entirely of fixed points), whereas for e small the typical resonance 
structure is created as was revealed through a study of (3.15) under the rescaled time or, slow time, 
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As we mentioned earlier, we want to relate the asymptotic behavior of trajectories in the stable and 
unstable manifolds of the annulus to trajectories in the annulus for E small, but nonzero. From eqs. 
(3.15)-(3.18) as well as the discussion following these equations it should be clear that this is a singular 
perturbation problem; however, since we will require infinite time results, classical singular perturbation 
approaches will be of limited use. Rather, we will see that the problem is most naturally addressed from 
the geometrical, dynamical systems viewpoint that utilizes the fibering of the stable and unstable 
manifolds by submanifolds consisting of initial conditions of trajectories that have the same "asymptotic 
phase". 

We will set the stage for this by noting that one can interpret these unperturbed heteroclinic orbits 
connecting the fixed points in the annulus in a slightly different way. Clearly, all points on a heteroclinic 
orbit approach the same fixed point in the annulus asymptotically in forward time as well as the same 
fixed point in the annulus asymptotically in backward time (of course, the forward and backward time 
limit points are, in general, different). Thus, we see that WS(~¢ 0) and WU(~¢'0) can be viewed as the 
union of a two parameter family of curves (the two parameters are h and y) that: have the properties that 
points on the curves asymptotically approach the same orbit (which is just a fixed point) in .a¢ 0. We say 
that WS(.a¢o) and WU(.a¢0) are fibered by an invariant family of curves made up of initial conditions of 
trajectories that asymptote to the same orbit in ~¢0. In the case of the perturbed problem, if we could 
prove that these fibers, as well as the dynamical interpretation that all points on the fibers have the same 
"asymptotic phase", were persistent. 

We want to emphasize and illustrate the most important points with the following example which 
really captures the essence of the problem. 

Consider the perturbed equation 

~?=-E~,  E l = - r /  (3.19), 

with solution 

E(t) = E0 e - " ,  r/(t) = r/0 e- t  (3.20), 

and the unperturbed equation 

= O, El = -'O (3.19)o 

with solution 

E(t) =E0, -r/(t) = r/0 e-t .  (3.20)0 

The E axis is clearly an invariant manifold of the perturbed and unperturbed problems with the 
remainder of the E-r/ plane being its stable manifold. The analogy of this example with our problem 
should be dear. The E axis is analogous to our annulus and the remainder of the E-r/plane is analogous 
to the stable manifold of the annulus. 

Our goal is to relate orbits in the stable manifold of the perturbed problem to orbits in the invariant 
manifold, i.e., the ~: axis. Moreover, we would like to do this in a perturbative manner. Namely, assuming 
that we know "everything" about trajectories in the unperturbed problem, show that the perturbed 
trajectories are "close" to the unperturbed trajectories. However, immediately we see that this approach 
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Fig. 3.5. Trajectories and fibers in an example problem. 

may lead to serious difficulties. From (3.20), and (3.20) 0 we see that the difference between trajectories 
in the perturbed and unperturbed problems is finite as t ~ oo. Moreover, the orbits of the perturbed 
vector field are given by the one-parameter  family of parabolas {r /= c~l/~lc ~ ~}; clearly, these orbits 
are singular at e = 0, we illustrate the trajectories of the perturbed and unperturbed systems in fig. 3.5. 
Therefore,  it would seem that an approach based on a comparison of trajectories of the perturbed and 
unperturbed problems would not be successful. Let us consider the geometry more carefully and an 
alternate point of view. 

In the unperturbed problem the vertical lines ~: = so0 have the property that all points on them 
approach the point (so0,0) asymptotically at the rate e -t. Since the stable manifold of the ~: axis is the 
union of all such vertical lines, we can use these vertical lines to relate orbits in the stable manifold to 
orbits in the corresponding invariant manifold. If we refer to (~0, 0) as the base point of the vertical line 
s ¢ = ~0, then we see that trajectories with initial points on the vertical line ~: = ~:0 asymptotically approach 
the trajectory in the invariant manifold through the base point of the vertical line. Thus the two-dimen- 
sional stable manifold is fibered by one-dimensional manifolds that have the property that trajectories 
which start in the fibers asymptotically approach the trajectory in the invariant manifold that starts at the 
base point of the respective fiber. 

Now consider the perturbed problem; we know that the difference between trajectories of the 
perturbed and unperturbed problems becomes finite asymptotically. However, we want to examine the 
possibility that the fibering of the stable manifold, as well as the meaning of the fibers, will be stable 
under perturbations. The trajectory in the invariant manifold through the point (~:0, 0) at t = 0 is given by 
(s c(t) = ~:0 e - ' t ,  0) and the trajectory in the stable manifold through the point (~0, r/0) at t = 0 is given by 
(~:(t) -- ~0 e - " ,  rl(t) = rl0 e- t ) .  From these two expressions we easily see that this trajectory in the stable 
manifold approaches the corresponding orbit in the invariant manifold asymptotically. In other words, 
the stable manifold in the perturbed problem is fibered by one-dimensional curves (manifolds) (i.e., it is 
the union of a set of one-dimensional curves) and these curves have the property that trajectories 
through them asymptotically approach the trajectories in the invariant manifold through the base point 
of the curve. Thus, for this simple example we conclude 

(1) In the unperturbed problem the stable manifold is fibered by one-dimensional curves (actually, 
vertical lines) having the property that trajectories starting on the curves asymptotically approach the 
trajectory in the invariant manifold starting at the base point of the curve. 

(2) This situation is stable under perturbations, i.e., the fibering of the stable manifold persists and the 
fibers perturb by O'(E) (actually, in this simple example, the unperturbed and perturbed fibers are 
identical). Moreover, the interpretation of the fibers remains the same; namely, they represent curves of 
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initial conditions having the property that trajectories starting at points on the curves asymptotically 
approach the trajectory in the invariant manifold that starts at the base point of the curve. 

This fibering of the stable manifold allows us to view some aspects of a singular perturbation problem 
as a problem in regular perturbation theory. 

Fiberings of stable (and unstable) manifolds of this form have been studied in the context of dynamical 
systems theory for many years, however, they have not been used much in applications. Fenichel [17] was 
among the first to apply such ideas to problems arising in singular perturbation theory; in particular, to 
problems of the form of (3.17). Recall again the geometrical structure of this problem. At ~ = 0 the 
annulus z¢ 0 consists entirely of fixed points (under the "fast time" t). By hypothesis, each fixed point is 
connected to another (in general) fixed point by a heteroclinic connection. Thus the three dimensional 
stable and unstable manifolds of the annulus are fibered by a two parameter family (the parameters label 
a point on the annulus) of one dimensional fibers; clearly, the fibers at E = 0 are just the unperturbed 
heteroclinic orbits. Fenichel has proven that the fibers perturb smoothly in ~ and are ~(v~-) close to 
the unperturbed fibers. This is stated more precisely in the following theorem that we formulate in the 

context of eq. (3.17). 

Theorem 3.4. There exists 8 0 > 0 and % > 0 such that given any point (h ,~)  ~ ¢ ,  there exists a family of 
one-dimensional curves, called the stable fibers, that can be represented as graphs as follows: 

x 2 = x 2 ( x a ; h , ~ , ~ , v ~  ), h=h(xa;'h,~/,lz,vc-~), y = 3 , ( x a ; h , ~ , / x , v ~ -  ) 

where x = (x~, x2). The point (Tt, ~) is referred to as the basepoint of the fiber. These graphs are defined 
for any 0 < 6  <(5 o, 0 < e  < %  with Ixal_<8 and /z ~ •P. Moreover, these curves have the following 
properties. 

(1) They are C r in x a and C r- l  in (h,~,tz,  v~). 
(2) x2(£a,(I r + v~h, ~/,/z); h, ~,/z, v~-) = £2,(I  r + ~/~-h, ~,/x), h(£1,( l  r + yC~-h, ~,/z); h, ~, Iz, ~/~-) = h, 

r ( £ , , ( I  r + ~ ,  ~, ~); ~, ~/, ~, v T )  = ~, 
where, recall, ag,, with the I values suitably restricted, is the graph of £ , ( I , g , l * )  = 
(£a~(I, 3', Ix), £2,(1, T, tx)) (cf. theorem 3.1). 

(3) Wl~c(~' ,) is the union of all stable fibers with basepoints in ~¢,. 
(4) Let (h(t), ~(t)) be a trajectory in ~ ,  satisfying (h(O), ~/(0)) = (Tt, ~) and let (Xl(t), x2(t), h(t), 3'0)) 

be a trajectory in Wt~,¢(~¢ ,) satisfying 

x2( O) = x2( x,(O); ~t,~/,I.t, vr~ ), h(O) = h( x,(O);-h, ~/,Iz, vr~ ), T ( O ) = ' y ( x , ( O ) ; h , ~ , / x , V ~ ) ,  

i.e., the trajectory starts on the fiber with basepoint (5, ~), then 

I ( x ( t ) ,  h( t ) ,  y ( t ) )  - [ £ , ( I  r + v~-~ h ( t ) ,  ~ ( t ) ,  IZ), ~t(t), ~/(t)] ] < C e -At 

for all t > 0 and for some C, A > 0 as long as (h( t ) ,~( t ))  ~.a¢,. In other words, trajectories starting on a 
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stable fiber asymptotically approach the trajectory in .a¢ E that starts on the basepoint of the same fiber, as 
long as the trajectory through this basepoint remains in s¢~. 

(5) The family of fibers form an invariant family in the sense that fibers map to fibers under the time t 
flow map. Analytically, this is expressed as follows. Suppose (xl(t), x2(t) ,h(t) ,y(t))  is a trajectory 
satisfying 

x2(O)=x2(xl(O);h,~/,Ix,v~E ), h(O)=h(Xl(O);h,~/ , tx ,x/~),  3 / (0 )=3 / (x1 (0 ) ;h ,~ , I z ,v~- ) ,  

then 

x 2 ( t ) = x 2 ( x l ( t ) ; h ( t ) , ~ / ( t ) , I z , v ~ ) ,  h( t )  =h(Xl ( t ) ;T t ( t ) ,  ~/(t),l~,~/~), 

y( t ) = 3/( xl( t );-h( t ), ~/( t ), Iz, v~e ). 

(6) At e = 0 the unperturbed fibers correspond to the unperturbed heteroclinic orbits. Hence the 
perturbed and unperturbed fibers are crv~-e -close. 

Proof. This follows immediately from the results of Fenichel [12, 17]. [] 

We make the following remarks concerning this theorem. 

Remark 1. An identical result follows for the fibering of WU(~,).  

Remark 2. Quasilinear partial differential equations whose solutions are the fibers can be derived. These 
equations are analogous to those given following theorem 3.1. We will not require these for our 
calculations, however, the reader can find these equations in [17]. 

Finally, we want to state a result that will be important in the next section. 

Proposition 3.5. Wl~c(p ,) is C r e-close to WlUc(P0 ). 

Proof. This result follows from a slight, but straightforward, modification of the usual unstable manifold 
theorem, see [15] for details. A modification of the usual result is required since P0 is not hyperbolic. [] 

At this stage it is appropriate to warn the reader that "closeness" is a concept that depends on the 
specific coordinate system under consideration. In particular, in this paper we are considering two 
coordinate systems; the x-I-3~ coordinate system and the x-h-3/coordinate system. Points that are ~(E) 
close in the x-I-3~ coordinates are ~(v~E ) close in the x-h-3~ coordinates. Thus, proposition 3.5 is a 
statement about the closeness of Wlo~c(p,) and Wl~c(p o) in the x-I-3/ coordinates. These issues will play 
an important role in section 4.1. 

4. The existence of a homoclinic connection to p .  

The geometric structure of the perturbed system described in section 3 largely follows from general 
results related to the perturbation of normally hyperbolic invariant sets and their fiberings by submani- 
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folds of initial conditions with the same asymptotic phase. We will use this geometrical structure to 
develop the methods that will enable us to prove our main result; namely, the existence of an orbit 
homoclinic to the fixed point p, in the resonance. The proof will consist of two steps. In the first step we 
show that W , ( p , ) c  W~(s~'). Roughly speaking, this will imply that a trajectory in W~(p,)  leaves a 
neighborhood of the annulus ~¢, and returns close to the annulus. In the second step we show that the 
trajectoryactually asymptotes to p, as t --, oo. The first step involves an approach which is similar to the 
higher dimensional Melnikov theory developed in [7]. The second step involves the fibers of W~(~¢,) and 
is required even though from the first step we can conclude that trajectories in W"(p , )  asymptote to an 
orbit in .a¢, this orbit need not be in the domain of attraction of p,. We begin with the first step. 

4.1. WU(p,) c W~(~,): The higher dimensional Melnikov theory 

The setting here is the higher dimensional Melnikov theory as developed in [7], for which the (x, I, 3') 
coordinates are most appropriate. Our goal is to determine whether or not W ~(p,) intersects W S(~¢',). In 
order to do this we will develop a perturbative measure of the distance between these manifolds, of 
which the leading order term is (up to a nonzero normalization factor) a higher dimensional generaliza- 
tion of the Melnikov function. Since the details of these techniques can be readily found in the literature 
(cf. [7, 15]), here we merely summarize the essential points and steps in the development of the theory 
that we shall need. 

Step 1. For the unperturbed system, develop a parametrization of the unperturbed homoclinic manifold 
and set up a moving system of "homoclinic coordinates" on the homoclinic manifold. 

A parametrization of the unperturbed heteroclinic orbits in WS(~¢ o) N WU(5,¢ 0) was given in section 
2.2 (eq. (2.7)). With respect to this parametrization, we can "pick out" WU(po) by fixing the I and 3'0 
values in the expressions for the heteroclinic orbits that correspond to the coordinates of WU(p0). 
In particular, we fix I = I  r and 3'0--f°ooDlH(xh(s, Ir),Ir)ds+3"c(IXo). This choice for 3"0 gives 
3 ' ( -  0% Ir, 3'0) --- 3'c(/Z0). The remaining coordinate in the parametrization of WU(po) is t 0, and varying t o 
moves us around WU(po). 

Now at ~ = 0  the one-dimensional WU(p0) lies in the three-dimensional W~(~¢0). We want to 
determine under what conditions this situation will hold for the perturbed problem. We will do this by 
developing a perturbative measure of the distance between the corresponding perturbed manifolds. This 
distance measure uses the global geometry of the underlying integrable structure. In particular, let 
p =(xh(--to, IO, Ir, 3"(--to, Ir, 3"0)) denote a particular point on WU(Po)N WS(.a¢o) and consider the 
three-dimensional hyperplane at p, denoted lIp, spanned by the vectors n ( p ) =  (DxH(p) ,DIH(p)  - 
DIH(£0(F) ,  It),0), L and ~ where [ and 4/ denote constant unit vectors in the I and 3' directions, 
respectively, and n(p)  denotes the vector normal to F at the point p. Varying t o ~ ~ serves to move this 
hyperplane to all points of W"(po)~  WS(~¢ 0) and WU(p0) intersects the hyperplane at each point 
transversely in a point and WS(z~¢ o) intersects the hyperplane transversely at each point in a two-dimen- 
sional surface, see fig. 4.1. We develop a measure of the distance between W"(p,)  and WS(.a¢,) at the 
point p in the coordinates defining Hp. 

Step 2. The persistence of WU(p,) and WS(.~¢',) and the persistence of transversal intersections of these 
manifolds with IIp. 
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WS(A) N n 

wS(,,~) fl rip ~ F[p 

WU(po) fl rlp 

Fig. 4.1. Homoclinic coordinates in the unperturbed system. Fig. 4.2. The measurement of the splitting of the manifolds 
in the perturbed system. 

For e sufficiently small W"(po) and Wff.a¢ o) persist (denoted W"(p , )  and W~(z~¢',), respectively). 
Moreover, Wl~(Po) and Wl~(~¢ o) are C r e-close to Wm~(p ~) and Wl~c(~¢',), respectively. Using simple 
Gronwall estimates, it can easily be shown that outside a neighborhood of ~¢0, trajectories in W U(p 0) are 
e-close to trajectories in W"(p , )  for finite time intervals and trajectories in W~(~o) are e-close to 
trajectories in W~(~,)  for finite time intervals. Moreover, by persistence of transversal intersections, 
outside a neighborhood of ~'0, at each point p = (x h( _ to , I r), I r, 3'( -- to, I r, 3"0)) ~ W"(Po) n W ~(~¢0), 
W~(p,)  intersects Hp transversely in a point and WS(,~',) intersects lip transversely in a two-dimen- 
sional surface, see fig. 4.2. 

Step 3. Derive the Melnikov function and describe its geometric interpretation. 

It can be shown (see [7, 15]) that the distance between W"(p,)  and WS(~¢,) at the point p = 
(xh(_t0,  i r ) , / r ,  T(_to ' / r ,  To)), as measured in Hp, is given by 

d( to, Ir, Tc( l o) . P,o, e ) = EM( t°' Ir'  Tc( Izo) ; p'o ) ..b~,(e2), 
' I I -" (p) l l  

where 

M(to,Ir,Tc(tto);tto) = f +°°((DxH, gX> + ( D t H ) ( g ' ) ) ( q o ( t - t o , I r ,  Tc(tZo)),txo,O)dt 

- ( D , H ( x o (  Ir) , Ir))L+°:gZ(qo(t- to , Ir ,  T~(IZo)),lzo,O)dt , (4.1) 

with 

qo(t _ to , I r  Tc(]£O)) 

= x h ( t - t o , P ) , I r ,  T ( t - t o , I r T o ) = f _  ~ DIH(x ( s , V ) , l r )d s+ 3"~ ( . o )  I 
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This is accomplished via the standard "Melnikov trick". Namely, a time-dependent Melnikov function is 
derived from trajectories of the perturbed vector field through the points on the perturbed manifolds in 
lip. By differentiation with respect to time, as well as use of the unperturbed vector field, a linear 
ordinary differential equation can be derived which is satisfied by the time dependent Melnikov function. 
This equation is readily solved and the initial point of the solution yields (4.1). Details can be found in 
[7]. The function M(t o, U, Yc(/-~0);/z0) is referred to as the Melnikov function. Note that the Melnikov 
function in (4.1) simplifies since DtH(xo(Ir),  I r) = 0 for the class of problems studied in this paper. We 
leave this term in, however, since it appears in the more general Melnikov function given in [7] and, also, 
we will refer to it in our calculations in section 6. The following characteristics of the Melnikov function 
are important. 

(1) Note that if we make the change of variables t ~ t + t o in (4.1) then t o disappears from the 
Melnikov furtction. Henceforth we assume this has been done and omit t o from the arguments of the 
Melnikov function. This has an important geometrical meaning that we next describe. 

(2) If the one-dimensional WU(p,) and the three-dimensional WS(~',) intersect at a single point, then, 
by uniqueness of solutions, they must coincide along a one-dimensional orbit. Since W"(p , )  is invariant, 
this implies that WU(p,) is contained in W~(~,). This is the reason why t o can be eliminated from the 
Melnikov function since t o parametrizes points along a trajectory (this is explained in great detail in 
[7, 13, 15]). Hence, the measure of distance between the perturbed manifolds can be made at any point 
along the unperturbed trajectory. 

We have the following theorem: 

Theorem 4.1. Suppose that a t /x  =/z 0 (3.14) holds, and also 
(1) M ( I  r, yc(tz0) ,/z 0) = 0, 
(2) (d/dtz)M(Ir ,  yc(/~0) '/x0) has rank 1, 

then W U(p,) c W~(,~,). 

Proof. The proof can be found in [7] and [15]. [] 
Note that the Melnikov function is only a function of the parameters/z 0. This is not unexpected since 

we would expect that the one-dimensional W"(p , )  and the three-dimensional W~(~¢~) would generically 
intersect in a one-parameter family of vector fields, i.e., it is a codimension-one phenomenon. 

4.2. WU(p~)n WS(p,): a homoclinic orbit to p, 

Our arguments in this section will apply to the rescaled equations (3.15) and (3.17). In particular, all 
measures of "closeness" will be made with respect to the x - h - y  coordinates (cf. the comment at the end of 
section 3). Suppose we have shown that WU(p , )c  WS(~¢), then it follows from proposition 3.5 that 
there exist points 

L-ou n WL(p,),  o---av n WL(po) 

such that 

- 01 -- 

see fig. 4.3. Since WU(p,) c WS(d,),  the trajectory through the point/~, at t = 0 will ~return to U a after 
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2x1 

US ¸ 

,./'-%~(pO n au s:  ~, 

w~(p o) n ~u'. ~o 

Fig. 4.3. The geometry associated with trajectories leaving a 
neighborhood of .~',, i.e., the points /~, and /~o, (with the y 
coordinates suppressed). 

Some finite time of  flight. We denote this point by 

T - -  p~ = ou ~ r~ W " (  p~) .  

From the unperturbed problem we also have a point 

pg - ov n W"(  po). 

~ x2 

7"- x I 

T u 
P0=W (p0)N bU s 

Fig. 4.4. The geometry associated with trajectories returning 
to a neighborhood of ~',, i.e., the points pT and po T, (with the 
y coordinates suppressed). 

Since this time of flight from OU 8 to OU ~ is finite, it follows from simple Gronwall type estimates that 

Ipo -p l = 

see fig. 4.4. 
At this point we have shown the existence of an orbit that leaves a neighborhood of ~ and returns to 

a neighborhood of ~¢, by using perturbation theory of normally hyperbolic invariant manifolds coupled 
with a generalized Melnikov type analysis. It remains to show that the orbit approaches p, asymptotically 
as t --* oo; to show this we must use the fibers. It follows from theorems 3.4 and 4.1 that the points pT 
and pT are on fibers. We denote the base points of these fibers by p~ and p~, respectively, where, by 
theorem 4.1 

Moreover, the h -y  coordinates of p~ are given by 

p o  -= (o ,  = (o ,  + 

where Ay is given by (2.8). Now within ~¢, the domain of attraction of p, is approximated by the level set 
of the Hamiltonian connecting q0 in the sense described in lemma 3.3. Moreover, in the h-y 
coordinates, the area enclosed by this level set of the Hamiltonian is ~'(1). Hence, it follows from lemma 
3.4 that for e sufficiently small, if p~ is contained within the homoclinic loop connecting q0 (and an 
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W U ( P s ) f l ~  / . -F IBER WiTH 
x ! \ / e A S E P O I N T  

(a) 

w u~///wu(p~) 

Fig. 4.5. (a) The geometry associated with the return of a 
trajectory to a neighborhood of .4tr that is homoclinic to p,. 
(b) The perturbed and unperturbed fibers. 

I r+ C.,/'e I 

0 yn(lJ. 0 ) ys (JJ.o) 2x 
9 'y' 

Ys (IJ.o) Yn(JJ.o) 

(a) 

(b) 

- - ~  . . . . .  (c) 

i i 
l's(P+o) Yn(P+0) 

~'n~o) Ys(l~0) 

Pig. 4.6. Possible geometrical configurations for the unper- 
turbed (on the "slow time" scale) homoclinic orbit on A, that 
connects P0" 

~(1)  distance away from the homoclinic loop) that p~ will approach p,  asymptotically as t ~ oo. It 
then follows from theorem 4.1 that the trajectory through pT will approach p+ asymptotically as t ~ oo, 
see fig. 4.5. 

Verifying this situation is straightforward. Recall from section 3.2 that the equation for the homoclinic 
loop connecting q0 is given by 

g )  -, ,e '(O, = 0. 

We will refer to the region bounded by this curve as " the  fish". In terms of the angle values 3', the "tail" 
of the fish is at y = ys(/z0) and the "nose"  of the fish is located at y = yn(/Z0) where yn(/Z0) is found by 
solving the equation 

y ,  - x ( o ,  = 0 .  

In fig. 4.6 we illustrate the four general possibilities under our assumptions, which we refer to as cases 
(a)-(d). We summarize our results in the following theorem. 

Theorem 4.2. Suppose that a t /x  =/x 0 assumption 3 and (3.14) holds, and also 
(1) M ( I  r, yc(IXo), ix o) = 0, 
(2) d /d / z  M ( 1  r, "A(/-%),/~0) has rank 1 
with one  of the following cases holding (refer to fig. 4.6 for an explanation of the different cases; all 
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angles are taken mod 2"rr) 

(a) 7n(/Z 0) < ~/°°(/z 0) < 'ys(/Zo), 
(b) 0 < 3,®(/*o) < 3,s(/z0) or -/,(/z 0) < ~/®(/z 0) < 2w, 

(c) "/s(~o) < "/°~(~o) < "/n(~O), 
(d) 0 < y~(/z 0) < ~/n(/Z 0) or 3Js(/z0) < 3,~(/z0) < 27,  

then (1.1), possesses a "simple" homoclinic orbit connecting p,. Moreover, if (1) does not hold, then 
there are no homoclinic orbits connecting p, and if (1) and the angle inequalities for the appropriate 
case (a)-(d) do not hold, then there are no "simple" homoclinic orbits connecting to p,. 

By a "simple homoclinic orbit" we mean a homoclinic orbit that makes one excursion through a 
neighborhood of the annulus before connecting p,. Our methods say nothing about the existence of 
homoclinic orbits that may make several passes near the annulus before connecting p,. 

Some remarks on the two different sets of coordinates 
We now make some general observations on the role of the two sets of coordinates used throughout 

the analysis, the (x, I, y) coordinates and the (x, h, 3/) coordinates. As should be clear from the analysis, 
the (x, h, 3') coordinates serve to localize the system near the resonance on ~',. This results in the 
restriction to the annulus ~¢,, where the resonance structure is analyzed as well as the approach of 
trajectories to this resonance structure via the fibering of WS(~¢,). The (x, I, y) coordinates are more 
global in nature and are most convenient for developing the geometry behind the higher dimensional 
Melnikov theory. 

The most important, however, is the fact that for the purposes of applications, the equations are most 
naturally initially written down in the (x, I, y) coordinate system. The reader will see this in section 6 in 
our analysis of the dynamics of the two mode truncation of the damped, driven nonlinear Schr6dinger 
equation. Also, in applications one is often interested in understanding as completely as possible the 
global dynamics in the (x, I, y) coordinates and it should be clear that the (x, h, 3') coordinates cannot be 
used for these purposes. An example of this can be found in the numerical study of this same two-mode 
truncation of the damped, driven nonlinear Schr6dinger equation given in [9]. 

Also, the interplay between the x - l - y  coordinates and the x - h - y  coordinates is much like the 
situation encountered in the study of resonance bands in time-periodically perturbed one-degree-of- 
freedom Hamiltonian systems. In that setting one is often interested not only in the dynamics associated 
with a single resonance band, but in the behavior of many resonance bands and how they are 
interrelated. In this situation it is important to understand how the dynamics near a specific resonance 
band is affec{e8 by the structure of the "globally defined" vector field. This is analogous to understanding 
how equation (3.17) derives its structure from (1.1),. 

5. Chaos: Siinikov's theorem 

Perturbation of homoclinic orbits is a common mechanism for producing chaos in the sense of Smale 
horseshoes. Orbits homoclinic to fixed points in autonomous ordinary differential equations may or may 
not give rise to chaotic dynamics; additional conditions are needed concerning the stability properties of 
the fixed point (in particular, the dimensions of the stable and unstable manifolds) and geometrical 
properties of the intersection of the stable and unstable manifolds (e.g., the dimension of the intersec- 
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tion) that give rise to the homoclinic orbit. For the class of systems we are studying the following theorem 
of Silnikov [18] is relevant. 

Theorem 5.1. Consider a four-dimensional, autonomous C r, r > 3 ordinary differential equation having a 
hyperbolic fixed point that is connected to itself by a homoclinic orbit. Moreover, suppose that the matrix 
associated with the linearization at the fixed point has the form (in appropriate local coordinates) 

- p  - t o  0 0 
to - p  0 0 

0 0 - h  0 
0 0 0 v 

(5.1) 

where 

p , A > O ,  to4:0,  v > O  and v > p > O ,  h4:~,. (5.2) 

Then a three-dimensional Poincar6 map defined sufficiently close to the homoclinic orbit possesses an 
invariant Cantor set on which it is topologically conjugate to a subshift on a countable set of symbols. 

The original proof can be found in [18]. A more geometrical proof can be found in [7]. We make the 
following comments concerning this result. 

(1) It should be clear from the hypotheses of the theorem that the fixed point has a three-dimensional 
stable manifold and a one-dimensional unstable manifold. 

(2) In our class of problems - p  _+ ito represent the eigenvalues of the vector field restricted to 2a¢,, so 
it follows that - p  and to are #'(E). The eigenvalues - A  and v represent linearized growth rates 
transverse to ,at,, so -A  and v are #'(1). Hence, it follows immediately that v > p > 0. We need only 
verify that A 4: v, however it should be clear that this will generically be the case. 

(3) If the system is slightly perturbed in a way that the homoclinic connection is broken, then the 
Poincar6 map has an invariant Cantor set on which it is topologically conjugate to a full shift on a finite 
number of symbols. Thus the chaos is stable under perturbation. 

(4) If A > v then the orbits in the invariant Cantor set of the Poincar6 map have one positive 
Lyapunov exponent and two negative Lyapunov exponents. If A < v then the orbits have two positive 
Lyapunov exponents and one negative Lyapunov exponents, see [7]. 

(5) The manifestation of the chaotic dynamics in a specific application requires an interpretation of 
the geometry underlying the construction of the chaotic invariant set. We will see an example of this in 
section 6. 

(6) There are other possible mechanisms for chaotic dynamics in this class of problems. For example, 
homoclinic connections to q, (which has two-dimensional stable and unstable manifolds) as well as 
heteroclinic cycles involving p,  and q,. 

6. An application: modal dynamics of the damped, driven, nonlinear Schr6dinger equation 

In this section we use the general theory to study the dynamics of the two-mode model of the damped, 
driven nonlinear Schr6dinger equation described in the introduction. We rewrite the two-mode equa- 
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tions given in the introduction below: 

- i d  + (½1cl2 + ½1bl 2 - 1)c + ½(cb* +c*b ) b  = ieac + i , F ,  

- i b  + [½1cl 2 + 31bl 2 -  ( 1 +  kE)]b + ½(cb* +c*b)c  =ief lb.  (6.1), 

The unperturbed equations are obtained from (6.1), by setting e = 0 

- i k  + (½1el 2 + ½lbl 2 - 1)c + ½(cb* + c*b)b = O, 

- i b  + (½1el 2 + 31bl 2 - (1 + k2))b + ½(cb* + c*b)c = 0. (6.1)0 

It is straightforward to verify that the unperturbed equations possess the following two integrals: 

H o = ~lcl 4 + ½1bl21cl 2 + 31bl 4 - 3(1 + kE)lbl z - llcl 2 + ~(b2c .2 w b*2c 2) (6.2) 

a n d  

I =  ½(Icl 2+ Ibl2). 

the unperturbed system has the following Hamiltonian form: 

OH 
d = - 2 i ~ - - ~ ,  

By inspection, we 
transformations: 

(6.3) 

b-- - 

see that the unperturbed 

(6.4) 

equations are invariant under the following coordinate 

(6.7)0 

~c = - k 2 y  - 3 x 2 y  + 1 3 OHo 
~Y = By ' 

7 3 3 2 )~ = ( k  2 - 2 I ) x  + ~ x  + z x y  = - - -  

[ = 0 = oH° 
O T , 

4/= 1 - I -  x 2= OH° 
OI " 

OH o 
Ox ' 

( c , b ) ~ ( - c , b ) ,  ( c , b ) - - * ( c , - b ) ,  ( c , b ) ~ ( c , b ) e  ix, (6.Sa, b ,c )  

where X is any real number. 
Eqs. (6.1) are not of the form (1.1), where our theory can be applied. We can write them in the 

appropriate form b y  introducing the following coordinate transformation first used, to our knowledge, 

in [ 1 9 ]  

c = Icl e iv, b = (x  + iy)  e iv. (6.6a, b) 

In these coordinates the unperturbed equations become 
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and the integrals are 

H 0 ½I z -  I -  ~6 X4 3 2 . 2  ( I -  ½kZ)x 2 -  " 2 " 2  = --  g x  y + ~ y 4 +  and I. ~K y 

The perturbed equations are given by 

3 2  13[  Y sin y--/3X] 
£ = - k Z y - - i x  y+-~y +~ F $ / 2 i _ x Z _ y  2 

7 3  3 2_if[  ~ / 2 i _ _ x 2 _ y 2 S i n 3 " + f l y ] ,  )) = ( k  2 - 2 I ) x  + ~x + ~xy F x 

[= -E[ F~/2I-x 2- y 2  COS y + ( f l -  O~)(X 2 + y 2 )  + 2aI] ,  

~ =  1 - I - x 2  + e F  1 siny, 
~ / 2 i _ x  2 _ y 2  (6.7), 

which have the general form 

OH o OH 1 OH o OH 1 
£ = --~- + E ~ -- EI3X, Y=  OX -- E--ff~ -- eflY 

0 H i  0H o 0H l 
[=e-'~-y - - E 2 a I - - E ( f l - - a ) ( x 2 + y 2 ) ,  4/ OI e 0 I '  (6.8) 

where 

H l = - F ~ / 2 1  - x 2 _ y 2 s i n  3 ' .  (6.9) 

Eels. (6.7) are essentially of the form of (1.1) o however there is one (insignificant) difference. Namely, in 
(6.8) there is a minus sign in front of aHo/aI as opposed to the form given in (1.1),. Eq. (6,'8) can be put 
in the form of (1.1), by taking -3 '  instead of 3' as the angle conjugate to I or by interchanging x and y 
and taking the negative of the Hamiltonian. We use the form given in (6.8) so that we can directly 
compare our results with the results on the damped, driven sine-Gordon equation described in the 
introduction since this form does not effect the geometry of the invariant manifolds described in the 
general theory. We next describe the integrable structure of the unperturbed equations (6.7) 0. 

6.1. The unperturbed integrable structure 

We now show that (6.7) o has the invariant manifold structure described in the general theory. In order 
to do this we must consider the x-y component of (6.7) 0 which we rewrite below: 

3 2 1 3 __ 3 2 = - k 2 y  - -~x y + ~ y  , P = ( k  2 2 I ) x  + 7x3 + ~xy . (6.7)x,y 

Note that (6.7)x,y has a fixed point at (x, y ) =  (0,0) for all values of I, this is a result of the symmetry 
I 2 given by (6.5b). A simple linear stability analysis shows that (x, y ) =  (0,0) is a saddle point for I > ~k . 

Moreover, an examination of the level set of the Hamiltonian that contains the origin, i.e., H(x,  y, I)  - 
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. . . . .  i . . . .  @ , : ,  I - k ~  

Fig. 6.1. Phase portraits of  (6.7)x, r as a function of L Note the global bifurcation at I = 4k 2. 

H(0, 0, I )  -- 0, shows that for each I in this range the origin has a pair of symmetric homoclinic orbits. 

Thus we have 

..¢[= ( ( x , y , l ,  y ) lx=y=O,  I> ½k 2} (6.10) 

and 

WS( ~ )  n WS(.ct ") - {( x, y , I ,  y ) lH(  x , y , I )  - H(O,O,I)  =0}. (6.11) 

The fact that one homoclinic orbit implies the existence a pair of homoclinic orbits follows from the 
symmetry (6.5b). In fig. 6.1 we show the phase portraits of (6.7)x,y as a function of I; note that at I = 4k 2 
a global bifurcation associated with the homoclinic orbits connecting the origin occurs. In fig. 6.2 we 
show only the invariant manifold structure that will be important for our analysis. 

Analytical expressions for the homoclin!c orbits 
In calculating the Melnikov functions it will be important to have analytical expressions for the 

homoclinic orbits of (6.7)x, r that connect the orign as a function of I. These calculations require a fair 
amount of tedious labor, however they are instructive so we include some of the details here. 

We being by letting 

x + iy = ~ e i°. (6.12) 

In these coordinates the unperturbed equations (6.7) o become 

= ' 2 B ( I - B ) s i n 2 O ,  0 = k  2 - I ( 1 + c o s 2 0 ) + B ( 3 + 2 c o s 2 0 ) ,  

1= O, .'~ = 1 - I - B ( 1  + COS20), (6.13) 
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2 

Fig. 6.2. The  invariant manifold structure that plays a role in our  analysis. 

with the Hamiltonian H 0 being transformed into 

Ho = ½ 1 2 - I -  3B2+ ( I - kZ)B  +B(I-B)cos20. (6.14) 

By continuity, the value of the Hamiltonian on the orbits homoclinic to ~ is the same as the value of the 
Hamiltonian on .K, which is ½12- I. Equating this value to (6.14) and canceling the common factor B 
gives 

4k 2 - I 

B=I 3 + 4cos20 " (6.15) 

Substituting (6.15) into the 0 component of (6.13) gives the following equation for d on the homoclinic 
orbits: 

d = I(1 + cos20) - k 2. (6.16) 

Next we let 

= 3' + 0 (6.17) 

and add (6.16) and the ~, component of (6.13) to get the following equation for qJ on the homoclinic 
orbits: 

1 qJ = 1 - I -  ~B. (6.18) 

Eqs. (6.15), (6.16), and (6.18) provide us with the necessary (and sufficiently simple) relationships for 
solving for the homoclinic orbits. Eq. (6.16) can be integrated directly to obtain O(t) on the homoclinic 
orbits. This result can be substituted into (6.15) to obtain B(t) on the homoclinic orbits, from which x(t) 
and y(t)  can be obtained from (6.12). Eq. (6.18) can be integrated directly to give ~(t)  on the homoclinic 
orbits. This result can then be added to O(t) to give 3'(t) via (6.17). In computing these integrals there 
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will be two cases corresponding to I > 4k 2 and ½k 2 < I < 4k 2. The fact that there are two cases stems 
from the global bifurcation at I = 4k 2 of the equation (6.7)x,y mentioned earlier. 

I > 4k 2 with initial conditions O(t = O) = ~7r,1 qJ(t = 0) = ~b 0. For this case we have 

B = 4 k 2 ( 2 I - k 2 )  (6.19) 
( I - 4 k  2 ) c o s h ( z k ~ - k  2 t) + I +  3k 2' 

k tanh(k 2x /~-  k 2 t ) ,  (6.20) cot 0 = 
_ k  z 

1 ) 
q, tanh -1 t a n h ( k ~ k 2 t )  + ( 1 - I ) t  +~0 (6.21) 

2 i _ k  2 

~k 2 < I < 4k 2 with initial conditions O(t = O) = O, ~b(t = 0) = ~0. For this case we have 

B = 4 k 2 ( 2 I  - k2)  (6 .22)  

( 4 k 2 - i ) c o s h ( Z k  2gr2-~ - k  2 t )  + t + 3k 2" 

t a n O =  ~ / ~  - k2 k t a n h ( k 2 x / ~ - k  2 t ) ,  (6.23) 

1 ) 
~0 tanh -1 tanh(k 2x/2x/2x/2x/2x/2x/2~-k 2 t) + ( 1 - I ) t + 0 0  (6.24) 

7k 2 

Orbits homoclinic to the circle o f  foced points 
From (6.7) 0 and (6.10) we see that the unperturbed equations restricted to a¢" are given by 

i = 0 ,  ~ = 1 - I .  (6.25) 

hence, (6.25) has a resonance at I = 1. As discussed in section 2, this resonance is manifested as a circle 
of fixed points on ~ and we would like to use the expressions for the homoclinic orbits given above to 
compute the phase shift, Ay, of orbits that are asymptotic to points on the circle of fixed points as 
t --* + ~. There are two cases. 

1 0 < k < 7- For this case we obtain the following expressions from (6.20) and (6.21) with I = 1. 

~ - t a l  n . _ l [  ~ ) ~  1 ( ~ ) V  2 - k  2 ~ b ( - ~ ) =  la /V +qJ0, ~ b ( ~ ) = - ~ - t a n h  -x +qJ0, (6.26,6.27) 

o ( - ~ ) - - , n - - c o t  -1 ~ , o(oo)=cot  -1 ~ -  . (6.28, 6.29) 
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Using (6.17) gives 

T ( - ~ )  = To - ~ + c o t -  ~ 
1 1[ ~ l  

1 ( k ) l  7( ° ° ) = y o + ~ r r - c o t - I  ~ _ ~ _ t a n h - 1  

Hence, we have 

215 

(6.30) 

(6.31) 

- ~ "  tanh- '  
IV 2 - k "  

(6.32) 

In fig. 6.3 we plot AT as a function of k for this case. From this plot we see that A T is a monotonic 
1 function that approaches zero as k goes to zero and -oo as k goes to 3. 

1 < k < v~. For this case, using (6.23) and (6.24) at I = 1 gives 

~b(-oo) = ~ -  t anh-1  V ~ ] + ¢o, 1 [ ~ ]  
q,(oo) = -~- '~ tanh- l [v  ¢' k" ~ ] +¢o, (6.33,6.34) 

tanl(  2) (k2) k 0(oo) = tan -1 V ~ -  
' k " (6.35, 6.36) 

Using (6.17) gives 

T(_Oo) = 7o+ tan_,( VC2-k 2 ) 1 1[ ~ ~  ~- + - ~ - t a n h - [ V ~  ] '  

7 ( o o ) = y o - t a n - l ( ~ k  ) - ~ - 1  t a n h _ l / [ V ~ ] ~ ] .  

(6.37) 

(6.38) 

- 0 . 5  

A'~ -1. 

-1 .5  

- 2  

-2 . !  

o11 0:2 ' ' : 

0< k < l / 2  

0:6 o:s 

-1 

A" 

4 

1/2 < k <  -/~ 

Fig. 6.3. The graph of A T as a function of k for 0 < k < ½. Fig. 6.4. The graph of AT as a function of k for ½ < k < v~-. 
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Hence we have 

Ay 3"(+oo) 3 ' ( - ~ ) = - 2 t a n - ' (  v / 2 - k 2  ) 2 , ( ~ )  - - ~ - ~ - t a n h -  V ~  " (6.39) 

In fig. 6.4 we plot A3" as a function of k for this case. From this plot we see that A3' is a monotonic 
1 function that approaches -oo as k goes to ~ and zero as k goes to v~-. Note that the function is always 

negative. 

6.2. Dynamics near the resonance on sO, 

We now want to consider the dynamics of the perturbed vector field restricted to ~¢, near the 
resonance at I = 1. For this example, the perturbed normally hyperbolic invariant manifold coincides 
with the unperturbed manifold since x = y  = 0 is invariant under the perturbed dynamics also (this is 
related to the fact that the symmetry (6.5b) is also present for the perturbed problem); hence, the general 
theory described in section 3 simplifies considerably. Thus the perturbed vector field (6.7), restricted to 
a~', is given by 

~F i= - , ( r  2¢~-cos3'+2ai), ~= 1 - I +  ~sin3' .  (6.40) 

We will be interested in the dynamics of (6.40) near I = 1, i.e., in an annulus on the cylinder with 
coordinates 1-3" centered at I = 1. Following section 3.2, we introduce the coordinate transformation 
I -- 1 + ~ h, rescale time by letting ~" = v~- t, and Taylor expand in V~ about v~- = 0. Eqs. (6.40) then 
become 

h ' = - v ~ F c o s 3 " - 2 a - v c ~  2 o t + - ~ - c o s 3 '  h + @ ( ~ ) ,  3 " = - h +  s in3 '+@(~) .  (6.41) 

where the prime denotes the differentiation with respect to ~'. 
In the limit ~ ---, 0 (6.41) becomes 

h' = -F~/2  cos 3' - 2a ,  3" = - h .  (6.42) 

Eq. (6.42) is just the familiar equation for a pendulum subject to a constant torque. Moreover, it is 
Hamiltonian with Hamiltonian function given by 

, ~  = l h 2  -- V~/2 sin 3" - 2a3" .  (6.43) 

A simple analysis shows that (6.42) has two fixed points whose coordinates must satisfy 

h = 0, cos 3' = - v~ -~. (6.44) 
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Hence, the (h, y)  coordinates of the two fixed points are given by 

( °) ( °) p0 = 0, r r - c o s - ~ v ~ -  T , q0 = 0 , ~ r + c o s - l v ~ -  T (6.45) 

where P0 is a center and q0 is a saddle. These two fixed points coalesce in a saddle-node bifurcation at 
a = F/x/2.  Moreover, the saddle point is connected to itself by a homoclinic orbit. In fig. 6.5 we show the 
phase portrait of (6.42). Note that the length (measured with respect to the 3' coordinate) of the "fish" in 
fig. 6.5 varies monotonically with ot (from 0 to 2rr) and the maximum width (measured with respect to the 
h coordinate) varies linearly with F. 

Next we want to determine what becomes of the phase portrait when the higher order terms in v~- are 
taken into account. The trace of the linearization of (6.41) is given by - 2x/~-a + ~'(E). Hence, by lemma 
3.2, for ~ sufficiently small and a > 0, P0 becomes a sink and the homoclinic orbit breaks with a branch 
of the unstable manifold of q, falling into p,  as shown in fig. 6.6. 

6.3. Calculation of the Melnikov function 

Using (4.1), the integrand of the Melnikov function is given by 

BH0 BHI BH 0 BH 1 
Bx By By Bx 

[ BH 0 BH 0 

BH° t 

x[2 I + ( 8  - + y )l, (6.46) 

h, 

q0 

~ ~ ~*'~ ~ _ ~  S ~  

qo 

~ " " ~  IDENTIFY ~ " ~  

Fig. 6.5. The phase portrait  of eq. (6.42) (for a typical value 
of F and a). 

_y i 

rl + coe-l~ - n  - c o s - l - ~  

IDENTIFY 
[----I - BASIN OF ATTRACTION OF THE ORIGIN 

[7.7] - BASIN OF ATTRACTION OF pt 

Fig. 6.6. The phase portrait of eq. (6.41) (for a typical value 
of F and a). 
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where the first line is due to the constant driving and the second line is due to the dissipation. Recall that 
the integrand of the Melnikov function will be integrated along the unperturbed heteroclinic orbit that is 
asymptotic to P0 as t ~ -oo which is obtained from the general expressions given in section 6.1 by setting 
I =  1 and yo=W-cos-lvr2(a/F). In the formulae that we derive we will explicitly denote the 
arguments of the aHo/OI term since this term may be evaluated on either ace or on an orbit homoclinic to 

atr. The Melnikov function integrand can be simplified considerably. A simple calculation using the chain 

rule gives 

0 H  0 0 H  1 0Ho 0 H  1 dH1 OHl OH o - -  = (6.47) Ox Oy Oy ~x dt Oy OI ' 

where we have used the fact that [ = 0. The Melnikov function thus simplifies to 

- d H  1 
dt  

OH 1 
00~-° (0 ,0 ,  I )  ~ - / 3 (  .'~y - p x )  

- ( ~ - ( x ,  y,I)  - ~-~(O,O, I) )[2aI+ (/3 -a)(x2 + y2)], (6.48) 

where we have used 

OH o OHo 
Oy ' 0x " 

Up to this point, the expression given in (6.48) is completely general; we have not set 1 = 1 or fixed Y0 at 
the value corresponding to P0- Now we set I = 1 so that (aHo/OI)(O,O, I ) =  0 in which case (6.48) 

becomes 

--  d H  1 

dt 
+/3(x9 -y : ? )  + 2aq  + (/3 - a ) ( x  2 + y 2 ) q ,  (6.49) 

where we have used 

OHo 
~'= OI"  

We now integrate (6.49) around the unperturbed heteroclinic orbit at I = 1 that approaches P0 
asymptotically as t --+ -oo. We examine each term in (6.49) individually. 

It is clear that the first term in (6.49) can be integrated directly to give 

f+oo ~ d i l l  - _ d t  d t  = o o )  - s i n  y (  - oo)]. (6.50) 

Recalling from section 2.4 that A y -  y ( + o o ) -  y ( - o o )  and using trigonometric identities allows us to 

simplify (6.50) to 

(+oo dHl  
- J -~o  dt  d t = v ~ - F [ s i n y ( - o o ) ( c o s A y - - 1 ) + c o s y ( - ° ° ) s i n A y ] .  (6.51) 
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From (6.44) and (6.45) we have 

sin y ( -oo)  = ~ / 1 -  2 ( F  )2, COS '~(- 00)= --y/2 -~, (6.52) 

which substituted into (6.51) gives 

_ dt 1 - 2 , , / 2 ( c ° s A y - I ) - v ~ ,  sinAy " (6.53) 

It is also easy to see that the third term in (6.49) can be integrated directly to give 

2 a L + ~ ,  d t = 2aAy. (6.54) 

We now examine the second and fourth terms in (6.49). Differentiating (6.12) with respect to time, one 
can easily show that 

xS' - yk = 2B0 (6.55) 

and, taking the modulus of (6.12) gives 

x 2 +y2 = 2B. (6.56) 

From these two relations and (6.17) we obtain 

xp - y ~  (6.57) 
x2+y2 

o r  

x 2 + y2" (6.58) 

Substituting (6.58) into the fourth term of (6.49) and combining the result with the second term of (6.49) 
gives 

fl( x ~ - y A )  + (fl - a ) ( x 2  + y2)q/=a( x~ -y.fc) + (fl - a ) ( x 2  + y2)~. (6.59) 

We next integrate the two terms in (6.59) around the heteroclinic orbit. Using (6.55), the integral of the 
first term of (6.59) becomes 

L~°~( xp - y ~ ) d t  = 2 f ? ~ B d d t .  (6.60) 
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Using (6.15), at I = 1 we have 

1 
B = 1 - (4k 2 -  1) 3 + 4cos0 

which, when substituted into (6.60), gives 

~ - 1" r0(+~) d0 (6.61) 
( x y - y £ ) d t = 2 A O - 2 ( 4 k Z  )Jo(-oo 3 + 4 c o s 0 '  

where 

a o  = o (  + - 

1 1 v~-. Integrating the can be obtained from (6.28) and (6.29) for 0 < k < ~ and (6.35) and (6.36) for ~ < k < 
last term in (6.61) gives 

f ) ? (  x3>-y£) dt = 2 A 0 -  2(4k 2 -  X)Aq,, (6.62) 

where Aqt = 0( + ~) - q'( - ~) and from (6.26), (6.27), and (6.34) we have 

2 ~ 7k 2 1 
A 0 =  - V~- tanh - 1 _  2 _ k 2  f o r 0 < k < ~ ,  or 

2 ~ /2  - k 2  1 
A~0 = v ~  tanh-a 7k2 for ~ < k < v~.  (6.63) 

Finally, we integrate the last term in (6.59) by first using (6.56) and (6.18) to obtain 

1 f + ~ B 2 d t "  (6.64) j_ ( x z + y2)O dt = _ 

1 1 Using the expressions for B(t) in (6.19) for 0 < k < ~ and (6.22) for ~ < k < ~ -  gives 

l f ) ? B 2 d t =  8[kV~-k2  + (1 + 3k 2) A~b], (6.65) 

where Aq, is given in (6.63). 
Using (6.53), (6.54), (6.59), (6.62), (6.64), and (6.65), the Melnikov function becomes 

M(a ,b , k )=[Vq- -aZ(cosAy  - 1 ) - a s i n A y ]  + 4 a k 2 A ~ b + ( b - a ) a [ k  2~/~ - k  2 +( l  + 3kZ)Aq'], 
(6.66) 



where 

a = v ~ - T ,  b =  . 
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(6.67) 

6.4. The existence of an orbit homoclinic to Pc 

Following the theory developed in section 4, in order to show that there exists an orbit homoclinic to 
p ,  we must first show that the Melnikov function has a simple zero. This condition is a sufficient 
condition for the existence of an orbit that is asymptotic to p ,  as t ~ -oo and asymptotic to an orbit in 
.a¢ as t ~ + ~. In order to verify that this orbit is asymptotic to an orbit in .a¢ that approaches p~ as 
t ~ + ~ it is siafficient to show that the unperturbed heteroclinic orbit that is asymptotic to P0 as t ~ -oo 
returns to the circle of fixed points as t ~ + ~ at a y value that places it within the unperturbed 
homoclinic orbit in ~¢, (in the rescaled coordinates) that connects q0. In order to simplify the 
calculations we take k = 1. This is also the value of k taken in the numerical experiments on the 
damped, driven s ine -Gordon  equation that was the motivation for this work described in the introduc- 
tion. Also, we note that in the following we round all numerical quantities (i.e., A7 and Aqt at k = 1) to two 
decimal places. In practice, these can be computed to any desired degree of accuracy, however, recall that 
the relevant quantities are only ~(E) or @(v~) approximations to the actual quantities for the perturbed 
system. 

Setting k = 1, and using (6.39), (6.63), and (6.66), the condition that M(a, b, 1) = 0 is given by 

b = - 1 1 . 2 0 ~ - -  a 2 - 1.14a. (6.68) 

Thus it follows that for all values of a ~ (0, 1) there is a value of b (which is always negative) such that 
the Melnikov function is zero. Moreover,  it is an easy calculation to show that this zero is a simple zero. 

Next, we show that the unstable manifold of p~ returns to d r at the appropriate  location. From (6.39), 
at k = 1, we have 

Ay = -- 1.87. (6.69) 

The location of the noise of the fish is given by the solution of the following transcendental equation (cf. 
eq. (3.13)): 

,g"(0, y , )  - X1(0, rr + cos-1 a)  = sin(,tr + c o s - I  a)  - s i n y n + a ( ~ r + c o s - l a - y n ) = O ,  (6.70) 

where X is given by (6.43) and a = x/-2a/F. From our knowledge of the phase portrait  of  the pendulum 
with torque, we know that (6.70) has exactly two solutions, one being the ~/ value corresponding to q0, 
denoted yqo. This equation can easily be solved numerically using Newton's method. In fig. 6.7 we 
present Yn, Yqo' and Yp0 + Ay for values of  a between 0 and 1 (note: Ypo is the y coordinate of P0). 

Recall that Ay only depends on k; in particular, it does not depend on a or b. Also, Yq0 and Yp0 
depend only on a. These facts allow for the simple graphical depiction in fig. 6.7 of the criteria for the 
unstable manifold of p ,  to asymptote to an orbit inside the "fish" on d ,  as given in theorem 4.2. Thus, 
we see that for a ~ (0,0.19) we have yn < Yp0 + Ay < Yq0" Hence,  we have the following theorem. 
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a 

Fig. 6.7. Graphs of 70o, 7., and 3'p~+ AT as a function of 

a = v~a/r. 

-7.88, 

F 
-7.92 

-7.94 

-7.96 

.~. 
0'.2 F 

Fig. 6.8. Parameter values in the jS/F-a/F plane (with 
k = 1) for which orbits homoclinic to p, exist, a/F < 0.13. 

Theorem 6.1. For e sufficiently small, a / F  < 0.13, and [3/F--- -7.92%/1 - 2 ( a / F )  2 - 1.14a/F, p, has a 
homoclinic orbit. 

The "approximate"  sign in theorem 6.1 refers to the fact that the Melnikov function is only an accurate 
measure of distance up to @(e2 )and  the numerical quantities have only been given to two decimal 
places. In fig. 6.8 we show the curve near  which the homoclinic orbit occurs. It is a simple matter  to show 
that the hypotheses of theorem 5.1 are satisfied for this system (see [15]). In particular, from remark 2 
following theorem 5.1, we need only show that the two @(1) (real) eigenvalues associated with the 
linearization of the perturbed vector field about Pe are not equal in magnitude. This is an easy 
calculation since the 4 x 4 Jacobian matrix is block diagonal (with two 2 × 2 blocks). At k = 1 the two 
@(1) eigenvalues are found to be + 1 - e/3 + @(e2). Hence chaos, in the sense of theorem 5.1, occurs for 
parameter  values near  this curve. We describe this more fully in the next section. 

6.5. The geometrical interpretation of chaos in phase space 

Theorem 5.1 implies that the orbit structure near  the homoclinic orbits is chaotic in the sense that a 
three-dimensional Poincar6 map defined near  the homoclinic orbits has an invariant Cantor set on which 
the dynamics is topologically conjugate to a shift map acting on a countable set of symbols. As stated, this 
result is not sufficient to explain how this chaos is manifested in terms of the motion in phase space of 
the dynamical system. For this, one must go into a bit of detail on the construction of the Poincar6 map 
near the homoclinic orbits, from this one can explain geometrically the meaning of the chaotic motion 
implied by the symbolic dynamics. In this section we will outline the geometrical construction of the 
Poincar4 map and the associated Smale horseshoe and symbolic dynamics. 

We begin by expressing the vector field in coordinates localized about p ,  as follows: 

Y c = - p x - t o y + F X ( x , y , z , w ) ,  • = t o x - p y + F Y ( x , y , z , w ) ,  

~ = - A z + F Z ( x , y , z , w ) ,  ~ = u w + F " ( x , y , z , w ) ,  (6.71) 

where we are assuming that the parameters  and e are fixed (and, hence, not explicitly shown) at the 
appropriate  values for the existence of a homoclinic orbit to p~. The coordinate transformations taking 
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the vector field into the form (6.71) involve translating the fixed point to the origin followed by a linear 
transformation that puts the linear part in real Jordan canonical form; such results are standard and can 
be found in, e.g., [7]. The coordinates (x, y) can be thought of as coordinates on 0~¢ and (6.71) is 
unchanged under the coordinate transformation (x, y, z, w) ~ (x, y, - z ,  - w )  which is the manifestation 
of the symmetry (6.5b) in these coordinates. Hence, if the origin has one homoclinic orbit then it must 
have another, which is just its image under this coordinate transformation. 

The method of analysis of the orbit structure near homoclinic orbits is standard. Cross-sections 
transverse to the vector field are defined by 

Hff = { ( x , y , z , w ) l S e - 2 " ~ ° / ' < _ x  <_8, y = 0 , 0 < w < 8 ,  - 8 < _ z < 8 } ,  

110 = {( x,  y , z , w ) l S e - 2 ~ ° / "  <_x <_ 8, y = 0 ,  - 8  <_ w <O, - 8  <_z <_ 8}, 

1I-? = { ( x , y , z , w ) l w  =8} 117 = { ( x , y , z , w ) l w  = -8} .  (6.72) 

and are Shown in fig. 6.9. As a convenient notation we define /70 =/-/~- U 11o. The Poincar6 map will 
map /70 into /70 and will be constructed as the composition of two maps; a map of 11ff into /7~-, 
denoted P~- (resp. /70 into Hi-, denoted Po)  which, for 8 sufficiently small, is essentially given by the 
flow generated by the linearized vector field and a map of/-/~- into/Tff,  denoted P~- ( resp . /7[  in to /70 ,  
denoted Pi-) which, for 8 sufficiently small, is essentially an affine transformation around the homoclinic 
orbits outside a neighborhood of the fixed point. The Poincar6 map P: /70 ~ / 7 0  is thus defined as 
p - p~- o p~- U Pi- o Po ,  see fig. 6.10. 

Now we want to show how a Smale horseshoe is constructed for this map. Consider the regions defined 
by 

R~ = {( x,  y ,z ,w)lSe-2"~°/ '°  <x  <6,  - 8  <z  <8,  8e-2"~(k+')~/'° < w <8e-2~k"/ '°} ,  

R-~ = { ( x , y , z , w ) l S e - 2 " ~ ° / "  <x  <8,  - 8  <z  <8,  -Se-e'~(k+')~'/'°> w > --Se-2"~k~'/'}. (6.73) 

and shown in fig. 6.11 for k fixed and sufficiently large. Under the map P, the image of R~- intersects 
R~ as shown in fig. 6.12, similarly for the image of R~- under P (just use the symmetry). Most 
importantly, P(R~)  intersects both R~ and R~-, similarly for P(R~).  Hence, we can find smaller regions 
in R ÷ and R- ,  denoted H ÷ and H - ,  respectively, that are stretched, contracted, and mapped over 
themselves as shown in fig. 6.13. The invariant Cantor set is the intersection of all the forward and 

/ 

Fig. 6.9. The cross sections Hd-, Ho,  H~-, and H i- (with the 
z coordinate suppressed). 

" y + 

1 
, / - -  p~- 

n; 
Fig. 6.10. The maps Pg, Pg, P~-, and Pi- (with the z 
coordinate suppressed). 
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Fig. 6.11. The regions R~ and R k (with the y coordinate 
suppressed). 

W 

S 
Fig. 6.12. The geometry of the intersection of R 2- and its 
image P+(R~). 

backward iterates of H + and H -  and the symbols in the symbolic dynamics can be taken to be + and 
- .  Thus, in terms of motion in the phase space, a + in a symbol sequence corresponds to motion close 
to the homoclinic orbit having positive z and w coordinates and a - in a symbol sequence corresponds 
to motion close to the homoclinic orbit having negative z and w coordinates. Therefore,  the chaos is 
manifested as random "jumping" around the two homoclinic orbits. 

6.6. On the relationship to the numerical experiments o f  Bishop et aL 

For the two-mode truncation of the damped and driven nonlinear SchrSdinger equation studied in this 
section we have found a mechanism for chaotic dynamics that is similar to that observed by Bishop et al. 
Namely, the Silnikov mechanism gives rise to deterministic " r andom"  jumping between two different 
types of spatially dependent  states with an intermediate passage through a spatially independent,  or flat 
state (the c-plane). However, the conditions under which this occurs are different than that studied by 
Bishop et al. in that they have equal damping in all of the modes (i.e., a =/3). Our  methods show that no 
perturbative, homoclinic orbits to Pc, of the type described in this paper,  exist for this case. Moreover,  in 
order for such a homoclinic orbit to exist the spatially dependent  mode (the b variable) must be 
negatively damped (which is unphysical). The meaning of these results (if any) for the dynamics of the 

damped  and driven nonlinear Schr/Sdinger equation is unclear. 
The original purpose for studying the two-mode truncation was as a "geometrically correct" model for 

the phase space structure of the nonlinear Schrodinger equation. With this point of view in mind, there 

V + 

H + 

Fig. 6.13. The three-dimensional horseshoe map. 
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are additional mechanisms in the two-mode truncation that may give rise to the type of chaos observed in 
the numerical experiments of Bishop et al.; in particular, orbits homoclinic to q~. Preliminary work in 
collaboration with David McLaughlin, Ed Overman, and C. Xiong indicates that such orbits exist when 
both modes are negatively damped. This is work in progress that will be reported elsewhere. In any case, 
a theoretical description of the numerical experiments of Bishop et al. is still an open question. 
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